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Abstract 

The molecular mean-square-amplitude matrix of 
crystalline biphenyl, C12Hl0, is calculated with an 
intermolecular potential of the atom-atom type. The 
effect of the presence of the low-lying torsional mode, 
which interacts with translational modes, is discussed. 
The Born S-matrix method is used, and proves to be an 
excellent approximation, which takes about ~ of the 
computer time of the exact calculation. The resulting 
amplitudes are in fair agreement with experiment, and 
show that the extremely high amplitude of libration 
about the long molecular axis may be satisfactorily 
explained without assuming a double-well shape for the 
torsional potential. 

Introduction 

The study of the thermal motions of the atoms in 
molecular crystals is of considerable interest for 
researchers in the field of X-ray and neutron diffraction 
and NQR spectroscopy, among others. Crystallog- 
raphers have developed several models to interpret 
atomic displacements in terms of molecular motions, 
using diffraction data. Cruickshank (1956a,b)proposed 
his TL model of thermal motion, where the molecules 
are supposed to be rigid, and rio interactions between 
translations and rotations are allowed; when this 
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restriction is lifted, the widely used TLS model of 
Schomaker & Trueblood (1968) results. 

A further complication arises when low-lying inter- 
nal vibrations, which mix with the external modes, like 
the butterfly mode of naphthalene and the torsional 
mode of biphenyl, are present. 

Although the usual crystallographic rigid-body 
model can be partially successful in accounting also for 
the mean square displacements relative to these internal 
modes, the treatment is nearly always incomplete: a 
practical demonstration of the limits of such a 
procedure is given here for biphenyl. 

There are several difficulties associated with the 
correct interpretation of molecular thermal motions 
from diffraction data; in this sense, a lattice dynamical 
approach is particularly useful, since it allows cor- 
relation with other experimental data, like vibrational 
frequencies (see Filippini, Gramaccioli, Simonetta & 
Suffritti, 1974). A series of lattice dynamical cal- 
culations of the molecular mean-square-amplitude 
tensors L, T and S have been published (McKenzie & 
Pryor, 1971; Luty, 1972; Filippini, Gramacioli, Simon- 
etta & Suffritti, 1973; Cerrini & Pawley, 1973; Pawley, 
1972; for instance); the correct values of the L tensors 
are particularly important to obtain bond-length 
corrections. 

In the present work we present a lattice dynamical 
calculation of the molecular mean-square-amplitude 
tensor of crystalline biphenyl at two temperatures, in 
the harmonic approximation. Although the semi- 
empirical atom-atom parameters due to Williams 
(1966) used in the calculations have not been adjusted 
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for this substance, the results of a calculation on the 
optically active modes at room temperature are in good 
agreement with experiment (Burgos, Bonadeo & 
D'Alessio, 1976). However, anharmonicity and pos- 
sible double-well effects have not been taken into 
account, and there are some uncertainties regarding the 
intramolecular field, which may affect the accuracy of 
the results. The presence of the torsional mode of 
biphenyl, on the other hand, provides an illustrative 
example of the effects of intermode mixing. 

T h e o r y  

The general theory of lattice dynamics of molecular 
crystals, and its application to crystallographic prob- 
lems is thoroughly discussed in the book by Willis & 
Pryor (1975). The method used in this work for the 
calculation of the dynamical matrix has been discussed 
in the literature (Taddei, Bonadeo, Marzocchi & 
Califano, 1973; Bonadeo & Taddei, 1973; Neto, 
Righini, Califano & Walmsley, 1978) and only the 
background for understanding the forthcoming dis- 
cussion will be presented here. 

The coordinate basis is formed by the isolated 
molecule normal coordinates, and mass-weighted trans- 
lation and rotation coordinates; the intramolecular 
potential is diagonal in these coordinates, and the 
corresponding matrix elements 2~ = 4n 2 v 2 are eigen- 
values of the isolated molecule secular equation. 

The dynamical matrix is written as 

with 

vrn vm Dul (k) = Fur (k) + 2 t t~tm (~.v (la) 

0 2 Ve ) exp(ik.r~), (lb) 
Fff~(k)= Z cOQl,tOQ~v m 

where Ve is the intermolecular potential, fl labels the 
unit cell,/~, v the molecules within the unit cell; l, m are 
the molecular motions associated with coordinates 
Ql,,t, Q~vm; and r~ is the radius vector joining the origin 
cell 1 and the cell ft. 

The main advantage of this coordinate basis is that 
the dynamical matrix can be factorized a priori 
according to the values of the different 2 t. In particular, 
only those modes which have a low 2 t, and therefore 
interact with the external motions, are taken into 
account in the lattice-mode calculation, thus keeping 
the dynamical matrix within a manageable size. 

Since the mean square displacements are indepen- 
dent of fl, a, v, these subscripts will be dropped in what 
follows. 

The mean square atomic displacement matrix for 
atom i is 

Bat°re(i) = (U i Utt'). (2) 

The atomic displacements can be written in terms of 
our basis coordinates as 

Ut= Z ~i.tQt + ½ ~. ~i, tm QtQm (3a) 
l lm 

with 

c3r t 
~t,t = - - ;  

0Qt 

t~ 2 r i 

~i, lm--  
OQt C3Qm " 

From (3a), 

(Ui)  = ½ ~. ;i, t m ( O l O m )  
lm 

and, neglecting terms in Q4, 

(3b) 

(4) 

(u/n/*) = Z ~l.t ~.m(QIQ,n). (5) 
lm 

The coefficients ~i,t are the usual Cartesian dis- 
placements, obtained from the isolated molecule secular 
equation for the internal modes and the Eckart 
relations for the rotations and translations. The gi, tm'S 
are non-vanishing only if both Qt and Qm involve 
angular deformations or rotations. The particular form 
of the coefficients depends on the type of coordinate 
involved; for the case of molecular rotations, see Neto 
et al. (1978). It can be seen that in principle all angular 
motions may contribute to the apparent shift of an 
atom. 

We may define a generalized molecular mean square 
displacement tensor as 

Bmol tm = ( a t O m ) .  (6) 

When QI and Qm are rotation and translation coordin- 
ates the matrix elements lamol "tin are proportional to the 
elements of the usual T, L and S matrices. When 
internal modes interact with these motions, this fact has 
to be taken into account in order to obtain an accurate 
description of B at°m in (5). 

B m°l may be calculated as 

nmom 1 Z e(l, bk)e*(m,bk) h [ hvb(k)/ 
'-'tin N t,k 87r2 vb(k) coth \ 2ks T ] 

(7) 

where b labels branches, and e(l, bk) is the eigenvector 
connecting the basis coordinate l with the crystal 
normal mode having eigenvalue 2b(k) = 41r 2 v2(k). This 
procedure requires the diagonalization of the dynamical 
matrix DT'(k) for a large number N of values of k. Born 
(1942) has shown that, expanding x coth x in series it is 
possible to write 

Bmol lm = ~ Stm(k) (8a) 
k 
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with the Born S matrix defined as 

S/m(k) : k B T [D~n]-~(k) + I 
N i5 

D?(k)  + . . . .  (8b) 
720 

It can be seen that in this case it is sufficient to invert 
the dynamical matrix, a simpler and much faster 
procedure than diagonalization. 

Crystalline biphenyl 

The crystal structure of biphenyl has been determined 
at 300 K (Hargreaves & Rizvi, 1962; Charbonneau & 
Delugeard, 1977) and 110 K (Charbonneau & 
Delugeard, 1976). The unit cell is monoclinic, space 
group P 2 1 / a  (Cgh) with two molecules located at 
inversion sites. In the gaseous state, the two phenyl 
groups are at 42 ° (Bastiansen, 1949), a compromise 
between the opposite effects of atomic repulsion and 
electronic conjugation. In the crystal, the inter- 
molecular forces overcome the internal forces, and the 
molecule is quasi-planar. There is strong spectroscopic 
evidence for phase transitions at 40 and 17 K (38 and 
24 K for C12D10);  the 40 K transition has been 
interpreted in terms of a Brillouin zone (BZ) boundary 
soft mode in the ( l l 0 )  plane, leading to a permanent 
torsional deformation (Friedman, Kopelman & Prasad, 
1974; Bree & Edelson, 1977, 1978). On the other hand, 
the spectroscopic evidence of the loss of the inversion 
center at low temperature, and the extremely large 
librational amplitude found by Charbonneau & 
Delugeard (1976, 1977), has led them to a different 
interpretation: there would be a torsional double well at 
all temperatures; at high temperatures the average 
position would be that determined by X-ray diffraction, 
and at low temperatures the molecule would be frozen 
in one of the distorted positions. 

Luty (1972) has calculated the lattice dynamical 
properties of biphenyl including the L and T tensors, 
without taking into account the torsional motion; the 
results do not agree well with experiment. Later on, 
Burgos et al. (1976)  studied the low-frequency optically 
active vibrations of biphenyl at room temperature. In 
their calculation, they used intermolecular potentials of 
the atom-atom type, with parameters due to Williams 
(1966) and included intermode mixing between lattice 
modes and the six interphenyl motions; these internal 
modes enter the calculation via their Cartesian dis- 
placements and the values of 2 t of (la). The former 
may be obtained, at least approximately, from sym- 
metry considerations, but the values of 2t cannot be 
transferred from the gaseous state since the geometry is 
very different, and therefore they were treated as 
adjustable parameters. The calculation showed good 

agreement with experiment; it was found that only the 
torsion mixes with the external modes, to such an 
extent that most u normal modes cannot be labeled 
translational or torsional. The intramolecular potential 
associated with this motion, 2T, is negative, since the 
planar configuration is a maximum of the internal 
energy. For values of v T = [--~,t/47z2] 1/2 between 0 and 
30 cm -1, the agreement was best, and for 'v~ = 62 
cm -~, the torsional modes become unstable. 

Taking into account the results of the previous 
calculations, we have considered only the mixing of the 
lattice modes with the torsional motion. Since there is 
an inversion center, the 7 × 7 B m°l matrix will be 
factorized in two blocks: one 3 x 3 libration tensor and 
one 4 × 4 translation-torsion tensor. For these modes, 
the Cartesian displacements are 

l x  r i 

i 

~ x r ~  
± 

l = x , y , z  (libration); 

l = x , y , z  (translation); 

torsion; 

where the molecular axes are defined to make I x < Iy < 
I~; r t is the coordinate of atom i in the principal inertial 
molecular axes; M is the molecular mass, and the plus 
or minus sign for ~T,t refers to atoms belonging to 
different phenyl groups. 

For translations and rotations, the relation between 
B m°l and the usual B m°l iS simply 

B mol 
TITn Bmol ~ro - - -  - Tt,, (9a) 
M 

Bmol 
Bmol __ RIRn __ L i n .  

RIRn 

For elements involving the torsion 

(9g) 

B~ m°l - a~m°l - 0 ~  (9c) 

Rmol 
Rmol - " T t t  __ O l t .  
~ T t t  V / - ~ x  (9d) 

It is to be noted that such simple expressions are 
possible because of the particular form of ~.t, but that 
for general internal coordinates the mass effects cannot 
be written out explicitly; this is, of course, the reason 
for defining B m°l as in (6). 

If, for the sake of simplicity, the molecule of biphenyl 
is taken to be perfectly planar, with r i -- xi ~ + yg :~, the 
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atomic displacement matrix B~ t°m in (5) may be written 
explicitly as 

{ T ~  + )'~ L: :  T.,y - xD,  I L ,  

/ s y m m e t r i c  T>,>. + x~ L:: 

s y m m e t r i c  s y m m e m c  

2 T.,:- Yt Lx: + xD' l  L>.~ + )'i O.,, 
2 , . T~: - x t Ly: + x t3 tLx:  + ) t  O,.~ 

T~: + x~  Lry + I '~ (L~  + O ) - -  2 x  i v i L~. + 2y l 0 : ,  

(10) 

It is clear from (10) that since Lxx and O~ show the 
same dependence on the atomic coordinates it is 
impossible to separate their effects experimentally, and 
that in fact the rigid-body model allows implicitly for 
this torsional effect, with L ~  = Lxx + 0~.  The effect of 
the Ot~ elements, however, is neglected in such a 
picture. 

It should be pointed out that in our case the 
bond-length correction (equation 4) is correctly per- 
formed, taking an Lexx ~ as before; the off-diagonal 
elements do not contribute in our case because 
~'.r,~ = 0 and the torsion-rotation elements of B m°l a re  

also zero. 

Table 1 shows the calculated values of B m°l of 
crystalline biphenyl at 110 and 300 K; we have 
included calculations for two values of the torsional 
force parameter v T. It should be noted that, although 
the torsion-rotation elements of B m°l a re  zero, the 
values of these elements in the dynamical matrix for 
general values of k are non-zero: they vanish when the 
average over the BZ is performed. Therefore the value 
of vT affects the libration tensor L, because the 
torsion-libration elements are taken into account in the 
diagonalization process of (7) or the matrix inversion of 
(8). 

In Table 2 we show the values of B at°m for a 
hydrogen atom in the ortho position with respect to the 
interphenyl bond, obtained from (5) with the data of 
Table 1 for T--- 300 K and v, = 30 cm-1. Although the 
value B at°m is only slightly affected by the inclusion of 
the elements Ot,, these are dominating in the off- 
diagonal elements ]:/atom and ];/atom This shows that, in ~ x z  ~ y z  • 

our case, the values obtained for Lx~, Lyz, Tx~ and Tr~ in 
a rigid-body treatment of diffraction data will be 
subject to large errors. 

Results and discussion 

We have calculated B m°! for crystalline biphenyl with 
the Born S-matrix method, (8). For the frequencies and 
temperatures involved, this approximation is better than 
0.1%, compared with the results of (7). On the other 
hand, the computing time is about a fifth of the exact 
calculation, certainly an important difference. 

The BZ sampling, in the context of the calculation of 
mean square amplitudes, has been discussed by 
Filippini, Gramaccioli, Simonetta & Suffritti (1976). 
They conclude that an uneven sampling, with more 
points near k = 0, is more efficient than the usual 
regular mesh over the irreducible part of the BZ. Chadi 
& Cohen (1973), on the other hand, give a general 
criterion for choosing special points, which depend on 
symmetry considerations alone, to achieve rapid 
convergence of averages of general functions of k over 
the BZ. We have performed calculations with the 
sampling methods indicated as A and C in Fig. 3 of the 
paper by Filippini et al. (1976), which correspond to 
their worst and best converging cases, respectively, 
with five points in each direction of reciprocal space; 
the sampling, in our case, has to be extended over 
positive values of kx, ky and ks, and negative values of 
kx or ky, to cover the irreducible part of the BZ with 
250 points. The special points defined by Chadi & 
Cohen (1973) for our symmetry may be chosen as 
those for which k x, ky and k s take the values ~, ], ~ and i], 
i.e. 128 points, with equal weight. For case A of Filippini 
et al. (1976), the values of the elements T were appreci- 
ably underestimated; the results for case C and the 
special points method are practically identical, and are 
those reported in the tables. 

Table 1. Calculated molecular thermal-motion tensors 

I x < I~. < 1 z. 

Temperature (K) 1 I0 300 

Units v (cm -~) 0 30 0 30 

Txx 0.0166 0.0169 0.0703 0.0728 
Txy 0.0008 0.0009 -0 .0099  --0-0096 

A2 Tx: 0.0000 -0 .0001  --0.0023 -0 .0024  
Tyy 0.0113 0.0114 0.0534 0-0544 
Ty~ - 0 . 0 0 1 7  -0 .0018  0.0126 0.0128 
T ,  0.0122 0.0124 • 0.0573 0.0576 

Ox~ - 0 . 1 0 6  - 0 . 1 0 6  0.420 0.586 
/~ (o) Oy~ 0.028 0.028 0.118 0.178 

O~, - 0 . 0 2 2  - 0 . 0 2 2  0.060 0.083 
O 9.38 11.08 40.72 57.70 

Lxx 11.44 11.59 53.61 54.50 
Lxy - 0 . 1 2  - 0 . 1 4  1.73 2.14 

(0)2 Lx z - 0 . 6 4  - 0 . 6 8  - 3 . 9 7  - 4 . 3 7  
Lyy 2.80 2.87 11.31 11.84 
Ly z 0.71 0.71 - 2 . 9 3  - 3 - 0 2  
L~z 3.21 3-28 12.58 13-38 

Table 2. Thermal motion tensor of a hydrogen atom in 
the ortho position with respect to the interphenyl bond, 

calculated including and excluding elements Ot~ 

Units 104 ]~2. T = 300 K; v =  30 cm-L I:, < I r < 1~. 

Or, = 0 Or, ~ 0 

Bx~ 922 922 
Bxy - 185 - 185 
Bxz - 107 116 
Byy 585 585 
Byz 108 176 
B~ 2211 2274 
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Table 3. Observed and calculated effective molecular 
thermal-motion tensors 

Units Tin 104 A2; Lin (0)2. v = 30 cm -~. I x < Iy < I~. 

110 K 300 K 

Observed Calculated O b s e r v e d  Calculated 

(A), (B) (A) (B) 

Txx 281 169 593 560 728 
Txy 15 9 - 12 --50 --96 
Txz 7 - 1 18 50 -24 
Tyy 216 114 453 320 544 
Ty z 20 -- 18 0 -30 128 
Tz~ 133 124 403 470 576 
L~ 45.70 22.67 109.17 105.9 112.20 
Lxy - -  -0.14 - -  - -  2.14 
Lxz - -  -0.68 - -  - -  -4.37 
Lyy 2.46 2.87 8.39 11.1 11.84 
L v ~ - -  0.71 - -  - -  -3.02 
L~: 3.45 3-28 11.47 8.0 11.38 

References: (A) Charbonneau & Delugeard 
Charbonneau & Delugeard (1976). 

(1977); (B) 

Under these conditions, a comparison between our 
calculations on the off-diagonal elements of L and T 
and the effective amplitude tensors obtained by 
Charbonneau & Delugeard (1976, 1977) is not 
meaningful since they refer to essentially different 
things. It is possible, however, to make such a 
comparison for the diagonal elements of L eft and T 
consistently. 

Table 3 shows that the calculated values for T = 300 
K are somewhat overestimated, and those for T = 110 
K somewhat underestimated, a fact that can be 
attributed to the roughness of the model. However, the 
overall agreement is fair, and the correct order of the 
different tensor elements is obtained. The most impor- 
tant result refers to the motion about the long 
molecular axis x. It is clear that the extremely high 
values of Lex~ obtained by Charbonneau & Delugeard 
(1976, 1977) can be perfectly well explained within the 
limits of our harmonic calculation. Although this does 
not prove that there is no torsional double well, it 
invalidates the only argument supporting its existence 
at the temperatures considered. 

We have performed frequency calculations for 
several relevant values of k. The important results may 
be summarized as follows: whereas for most points the 
lowest frequencies are associated with molecular 
translations, we find low frequencies, associated with 
the torsional motion, for the points (0½0) and 11 (~0). 
This fact is in agreement with the ideas presented by 

Bree & Edelson (1977, 1978), and further discussed by 
Cailleau and co-workers (Cailleau, Girard, Moussa & 
Zeyen, 1979; Cailleau, Moussa & Mons, 1979), 
interpreting the phase transition at low temperatures in 
terms of a BZ boundary soft mode which doubles or 
quadruples the unit cell in just these directions. 
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